简介
ConcurrentHashMap 顾名思义在HashMap的基础上加锁来保障并发操作时其内部数据的原子性。但是与HashTable直接用synchronized锁定全表不同。ConcurrentHashMap 使用了Unsafe类的CAS + synchronized + LockSupport,仅锁定table中的单个元素,实现了高效并发的需求。其中,最具学习的算法是将扩容任务拆分成多个子任务,然后让多个线程同时参与扩容任务。
数据结构
与HashMap基本一致。唯一不一样的点是,红黑树结构时,存在数组里的节点为TreeBin,然后由TreeBin来管理红黑树。
源码
构造方法
// initialCapacity 初始容量;loadFactor 加载因子;concurrencyLevel 预估并发数
public ConcurrentHashMap() {
}
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
// 计算容量。只能是2次幂,所以需要做转化。
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}
// 指定的加载因子,仅仅是初始化时使用。后续扩容均按0.75来计算阀值。这点跟HashMap是不一样的。
public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, 1);
}
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
// 计算容量
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
新增or修改节点
put(K key, V value)方法大致流程如下:
- 不允许key或value为null。这点与HashMap不同;
- 若table为空,则初始化table;
- 若table[i]为空,则通过CAS操作插入新节点,转向第六步;
- 若table[i]的哈希值为MOVED,则说明正在进行扩容任务,让当前线程参与扩容;
- 给table[i]加同步锁synchronized。table[i]的hash大于等于0,则为链表类型,否则为红黑树类型,进行相应的更新操作;
- 若binCount大于8且table长度小于64,则执行tryPresize()进行扩容,否则把原单向链表转化为双向链表,再由双向链表转化为红黑树;
- 调用addCount方法更新SIZE、扩容检查等;
put(K key, V value)方法
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
// 不允许key或value为空
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
// 自旋
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
// 初始化table
tab = initTable();
// 同过Unsafe类来获取最新值
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//同过Unsafe类的CAS锁插入数据
if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// 正在扩容。f节点为ForwardingNode
else if ((fh = f.hash) == MOVED)
// 让当前线程参与扩容
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) {
// 因为多线程,当前值可能在加锁前被改变。
if (tabAt(tab, i) == f) {
// hash值大于等于0,则为链表
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
// 已存在则更新
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
// 为空则插入
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// 红黑树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 链表长度大于8,则开始树化操作
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
// 计数&扩容检查等
addCount(1L, binCount);
return null;
}
initTable()方法
//初始化table
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
// sc小于0,则说明,初始化操作已经被其他线程处理了。
if ((sc = sizeCtl) < 0)
// 让出CPU时间。使当前线程由执行状态,变成为就绪状态,重新抢占CPU时间。
Thread.yield(); // lost initialization race; just spin
// CAS操作将sizeCtl的值改为-1
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
// 相当于sc = n*0.75;
sc = n - (n >>> 2);
}
} finally {
// 最后给阀值赋值。
sizeCtl = sc;
}
break;
}
}
return tab;
}
treeifyBin(Node<K,V>[] tab, int index)方法
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
// table的长度小于64的话,则进行扩容操作
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
tryPresize(n << 1);
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
synchronized (b) {
if (tabAt(tab, index) == b) {
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
// new TreeBin<K,V>(hd) 构造方法中会将hash修改为MOVED,并进行树化操作。
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
addCount(long x, int check)方法
private final void addCount(long x, int check) {
//多线程竞争修改baseCount失败的计数对象管理
CounterCell[] as; long b, s;
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
// 用BASECOUNT加上所有线程增加的长度,即CounterCell数组中的value值相加+BASECOUNT
s = sumCount();
}
// 如果的binCount大于等于0,需要去检查是否需要扩容及进行计数
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
// 条目数量大于阈值sizeCtl
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
// 生成一个扩容戳。如n=16,则rs为1000000000011011
int rs = resizeStamp(n);
//sizeCtl<0,表示有线程在进行扩容
if (sc < 0) {
// sc >>> RESIZE_STAMP_SHIFT!=rs,判断高位的扩容标记不相同,则不能参与扩容
// sc == rs + 1,表示扩容已经结束
// sc == rs + MAX_RESIZERS ,表示当前帮助扩容的线程数已经达到最大值
// (nt = nextTable) == null,表示扩容已经结束
// transferIndex <= 0,表示所有的 transfer 任务都被领取完了
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// 并增加线程标记
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
// 协助扩容
transfer(tab, nt);
}
// 当前线程开始扩容,将rs左移16位变为负数,并增加线程标记
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
// 开始扩容
transfer(tab, null);
s = sumCount();
}
}
}
查找节点
get(Object key)方法
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// hash值小于0为红黑树
else if (eh < 0)
// 这里的find(int h, Object k)方法是调用TreeBin类的重写方法。不要被表象迷惑啦!
return (p = e.find(h, key)) != null ? p.val : null;
// 链表
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
删除节点
remove(Object key)方法
public V remove(Object key) {
return replaceNode(key, null, null);
}
final V replaceNode(Object key, V value, Object cv) {
int hash = spread(key.hashCode());
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0 ||
(f = tabAt(tab, i = (n - 1) & hash)) == null)
break;
else if ((fh = f.hash) == MOVED)
// 协助运输扩容任务
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// 是否拿到锁
boolean validated = false;
synchronized (f) {
if (tabAt(tab, i) == f) {
// 链表
if (fh >= 0) {
validated = true;
for (Node<K,V> e = f, pred = null;;) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
V ev = e.val;
// 删除节点的前后节点互联
if (cv == null || cv == ev ||
(ev != null && cv.equals(ev))) {
oldVal = ev;
if (value != null)
e.val = value;
else if (pred != null)
pred.next = e.next;
else
setTabAt(tab, i, e.next);
}
break;
}
pred = e;
if ((e = e.next) == null)
break;
}
}
else if (f instanceof TreeBin) {
validated = true;
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> r, p;
if ((r = t.root) != null &&
(p = r.findTreeNode(hash, key, null)) != null) {
V pv = p.val;
if (cv == null || cv == pv ||
(pv != null && cv.equals(pv))) {
oldVal = pv;
if (value != null)
p.val = value;
else if (t.removeTreeNode(p))
setTabAt(tab, i, untreeify(t.first));
}
}
}
}
}
if (validated) {
if (oldVal != null) {
if (value == null)
addCount(-1L, -1);
return oldVal;
}
break;
}
}
}
return null;
}
扩容
transfer(Node<K,V>[] tab, Node<K,V>[] nextTab)方法
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
// stride 步长,也就是预分配给每个线程处理的个数。
int n = tab.length, stride;
// NCPU 可用线程数。如笔记本双核四线程,则NCPU=4。
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
// 初始化新table
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
// 2倍扩容
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
// 用来占位标记扩容任务。告诉其他线程该节点已经处理过了,同时让其他线程参与扩容。
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
//推进标识
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
// 分配任务。
// 注意:这里是多个线程同时抢占任务,若只有一个线程在执行,则会处理完所有任务。
// 而不是固定给每个线程分配固定任务。
while (advance) {
int nextIndex, nextBound;
// 处理完一个节点或完成所有扩容任务
if (--i >= bound || finishing)
advance = false;
// 扩容任务分配完毕
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
// 为当前线程分配扩容任务
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
// 完成所有扩容任务
if (finishing) {
// 删除成员变量nextTable ,这样addCount()检测到之后就无需再进来啦
nextTable = null;
// 更新全局变量
table = nextTab;
// 更新阀值
sizeCtl = (n << 1) - (n >>> 1);
return;
}
// CAS操作sc-1,表示当前线程完成扩容任务
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
// 尚未完成全部扩容任务
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
// 重新检查所有节点
i = n; // recheck before commit
}
}
else if ((f = tabAt(tab, i)) == null)
// 插入标记节点占位
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
// 已经被其他线程抢占处理了
advance = true; // already processed
else {
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
// 链表
if (fh >= 0) {
int runBit = fh & n;
// 链尾节点
Node<K,V> lastRun = f;
//找出最后一段完整的 fh&n 不变的链表,这样最后这一段链表就不用重新创建新结点了。
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
// 拆分成两个链表,且lastRun之前的结点因为fh&n不确定,所以全部需要重新迁移。
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
// 同HashMap一样。一个链表在原位置
setTabAt(nextTab, i, ln);
// 一个链表在 原索引+n 的位置
setTabAt(nextTab, i + n, hn);
// 插入标记节点占位
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
// 拆分成两个双向链表
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
// 需要树化,则进行树化操作。否则,由TreeNode转为Node
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
// 同HashMap一样。一个链表在原位置
setTabAt(nextTab, i, ln);
// 一个链表在 原索引+n 的位置
setTabAt(nextTab, i + n, hn);
// 插入标记节点占位
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
helpTransfer(Node<K,V>[] tab, Node<K,V> f)方法
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
Node<K,V>[] nextTab; int sc;
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
// 扩容戳
int rs = resizeStamp(tab.length);
// 扩容尚未结束
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
// 跟addCount()方法一样
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
transfer(tab, nextTab);
break;
}
}
return nextTab;
}
return table;
}
本文由 Administrator 创作,采用 知识共享署名4.0 国际许可协议进行许可
本站部分文章采集自互联网,因某些原因未注明出处,如有侵权,请留言告知。